AWC Anual Meeting:
 Convergence and curvature of phylogenetic Markov chains

Alex Gavryushkin
(joint work with Chris Whidden and Erick Matsen)

21st October 2015

THE UNIVERSITY OF AUCKLAND NEW ZEALAND

Motivation

Question

Why all Bayesian phylogeny inference software is (sometimes / so) slow?

Motivation

Question

Why all Bayesian phylogeny inference software is (sometimes / so) slow?

Question

Specifically: Why does it take (sometimes / so) much time to converge?

Motivation

Question

Why all Bayesian phylogeny inference software is (sometimes / so) slow?

Question

Specifically: Why does it take (sometimes / so) much time to converge?

Question

Even more specifically: Why no reliable convergence criterion is know?

Answer

Motivation

Question

Why all Bayesian phylogeny inference software is (sometimes / so) slow?

Question

Specifically: Why does it take (sometimes / so) much time to converge?

Question

Even more specifically: Why no reliable convergence criterion is know?

Answer
I don't know

Motivation

Question

Why all Bayesian phylogeny inference software is (sometimes / so) slow?

Question

Specifically: Why does it take (sometimes / so) much time to converge?

Question

Even more specifically: Why no reliable convergence criterion is know?

Answer

I don't know geometry well.

Discrete time-trees

Definition (Ranked tree topology)

Discrete time-trees

Definition (Ranked tree topology)

Discrete time-trees

Definition (Discrete time-tree)

Discrete time-tree space

Discrete time-tree space

Ricci-Ollivier curvature

Definition (Ollivier [2009])

Let (\mathcal{T}, d) be a metric (tree) space with a random walk

$$
m=\left(m_{T}\right)_{T \in \mathcal{T}}
$$

Let $T, R \in \mathcal{T}$ be two distinct points (trees). The Ricci-Ollivier curvature of (\mathcal{T}, d, m) along $\overrightarrow{T R}$ is

$$
\kappa_{m}(T, R)=1-\frac{W\left(m_{T}, m_{R}\right)}{d(T, R)}
$$

where $W(\cdot, \cdot)$ is the earth mover's distance.

In a nutshell

Negative VS positive

$$
\kappa_{m}(T, R) \leq 0 \Longleftrightarrow W\left(m_{T}, m_{R}\right) \geq d(T, R)
$$

In a nutshell

Negative VS positive

$$
\kappa_{m}(T, R) \leq 0 \Longleftrightarrow W\left(m_{T}, m_{R}\right) \geq d(T, R)
$$

Take-home message
 Negative curvature is bad.

Curvature of Markov chains on graphs

Theorem (Ollivier [2009])

If (\mathcal{T}, d) is a geodesic space then curvature is a local property.

Definition

Let (\mathcal{T}, d) be a graph with a Markov chain m. Then the curvature of the Markov chain m on the graph \mathcal{T} is the greatest number χ_{m} such that

$$
\chi_{m} \leq \kappa_{m}(T, R) \text { for adjacent } T \text { and } R .
$$

Trivial observation

Under a distance-one random walk, the following is true for any finite metric d and any pair of points T, R :

$$
\frac{-2}{d(T, R)} \leq \kappa(T, R) \leq \frac{2}{d(T, R)}
$$

Random walks

For now, we consider three simplest random walks on various phylogenetic tree spaces.

- Metropolis-Hastings random walk: Choose a tree from the one neighbourhood and accept it with probability $\min \left(1, \frac{\left|N_{1}\left(T_{\text {old }}\right)\right|}{\left|N_{1}\left(T_{\text {new }}\right)\right|}\right)$.
- Uniform random walk.
- Uniform p-lazy random walk, where p is the laziness probability.

Lower bounds

Theorem (G, Whidden, Matsen [2015])

Let T and R be adjacent trees. Then both the asymptotic curvature of the space with p-lazy uniform random walk and the curvature of the space with uniform random walk are at least

$$
\begin{aligned}
\kappa(T, R) \geq \frac{-n^{2}+2 n}{3.5 n^{2}-15 n+16} \geq-2 / 5 & & \text { in } \mathrm{r} S P R \text { space } \\
\kappa(T, R) \geq-\frac{4}{n-1} & & \text { in DtT space, } \\
\kappa(T, R) \geq-\frac{4}{n-2} & & \text { in NNI space, } \\
\kappa(T, R) \geq-\frac{8}{n-1} & & \text { in rNNI space. }
\end{aligned}
$$

The bounds are tight.

Upper bounds

Theorem (G, Whidden, and Matsen [2015])

Let T and R be adjacent trees. Then the curvature of the following spaces with uniform random walk satisfy

$$
\begin{aligned}
\kappa(T, R) \leq \frac{6 n-17}{3 n^{2}-13 n+14} & & \text { in rSPR space, } \\
\kappa(T, R) \leq \frac{1}{2(n-1)} & & \text { in DtT space, } \\
\kappa(T, R) \leq \frac{1}{2(n-2)} & & \text { in NNI space, and } \\
\kappa(T, R) \leq \frac{1}{n-1} & & \text { in rNNI space. }
\end{aligned}
$$

The bounds are tight.

Life is good, at infinity

Theorem (G, Whidden, and Matsen [2015])

Let $\left\{T_{n} \mid n \in \mathbb{N}\right\}$ and $\left\{S_{n} \mid n \in \mathbb{N}\right\}$ be two sequences of phylogenetic trees such that $d\left(T_{n}, R_{n}\right)=1$ for all n. Then

$$
\lim _{n \rightarrow \infty} \kappa_{n}\left(T_{n}, S_{n}\right)=0
$$

for the uniform random walk on the SPR graph ${ }^{*}$, the NNI graph, the rNNI-graph, and the DtT-graph.

[^0]

Figure: Scatter plot of $\kappa\left(\mathrm{MH} ; T_{1}, T_{2}\right)$ values versus $d_{S P R}\left(T_{1}, T_{2}\right)$ for the rSPR graph. Colour displays the average degree of T_{1} and T_{2}. Distance values randomly perturbed ("jittered") a small amount to avoid superimposed points.

Take-home message

$$
\begin{gathered}
1.001^{10000}=21916.68 \ldots \\
\text { BUT } \\
0.999^{10000}=0.000045 \ldots
\end{gathered}
$$

$$
\begin{gathered}
1.001^{10000}=21916.68 \ldots \\
\text { BUT } \\
0.999^{10000}=0.000045 \ldots
\end{gathered}
$$

- The curvature of basic random walks is normally positive.
- Although the spaces flatten out when the number of taxa n grows, there always are negatively curved pieces.
- Importantly, the number of those pieces grows with n.

Yann Ollivier
Ricci curvature of Markov chains on metric spaces
J. Functional Analysis, 256, 3, 810-864, 2009

Alex Gavryushkin and Alexei Drummond
The space of ultrametric phylogenetic trees
arXiv preprint arXiv:1410.3544, 2014

Chris Whidden and Frederick A. Matsen IV
Quantifying MCMC exploration of phylogenetic tree space Systematic Biology, doi:10.1093/sysbio/syv006, 2015

Chris Whidden and Frederick A. Matsen IV
Ricci-Ollivier curvature of two random walks on rooted phylogenetic subtree-prune-regraft graph
To appear in the proceedings of the Thirteenth Workshop on Analytic Algorithmics and Combinatorics, 2015

Alex Gavryushkin, Chris Whidden, and Frederick A. Matsen IV
Random walks over discrete time-trees
To appear on the arXiv, 2015
https://github.com/gavruskin/tTauCurvature

[^0]: *For the SPR graph, we have to bound the size of the subtree which is getting moved.

