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Equidistant (ultrametric) phylogenetic tree
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Equidistant phylogenetic tree with parameters
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τ -parameterisation
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τ -space

Definition
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t-parameterisation

Definition
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t-space

Definition
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Motivation

1 Bayesian MCMC: Mixing rate, access time, efficient
proposals.

2 Summarising posterior: No need to introduce several random
variables on different probability spaces, no need to fit
inconsistent data together.

3 Interesting algorithmic/data structures problems: How to
solve NP-complete problems on real computers for real data
(Chris and Erick can compute SPR-distance).

4 Interesting geometries: “Every new example of a non-trivial
simplicial complex of non-positive curvature is a big deal.”
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Nice metric spaces

Definition
A metric space is called nice if most statisticians would like it.

Examples of nice metric spaces include real line, Euclidean space,
and its nice subspaces.
Examples of not nice metric spaces include all non-measurable
subsets of a Euclidean space, all nowhere dense subsets of a
Euclidean space, and most importantly the spaces where it is hard
to define a random variable.

Theorem (Billera, Holmes, and Vogtmann [2001])
The space of phylogenetic trees is a nice space.

Theorem (G and Drummond [2015])
The space of equidistant phylogenetic trees is a nice space.
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Parameterisation matters!

Theorem (G and Drummond [2015])
t-space is not so nice.

More formally

Definition
A geodesic metric space is called nice if it is a convex
path-connected subspace of a computable metric space with
unique geodesics of the same dimension.

Theorem (G and Drummond [2015])
τ -space is an efficiently computable cubical complex with unique
geodesics.

Theorem (G and Drummond [2015])
t-space is a simplicial complex with unique geodesics.
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Discrete time-trees

Definition (Discrete time-tree)
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Discrete time-tree space
Trees at distance 3
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Discrete time-tree space
Trees at distance 3
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Ricci-Ollivier curvature

Definition (Ollivier [2009])
Let (T , d) be a metric (tree) space with a random walk

m = (mT )T∈T .

Let T ,R ∈ T be two distinct points (trees). The Ricci-Ollivier
curvature of (T , d ,m) along

−→
TR is

κm(T ,R) = 1− W (mT ,mR)
d(T ,R) ,

where W (· , ·) is the earth mover’s distance.
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In a nutshell

Negative VS positive
κm(T ,R) ≤ 0 ⇐⇒ W (mT ,mR) ≥ d(T ,R)

Take-home message
Negative curvature is bad.
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Curvature of Markov chains on graphs

Theorem (Ollivier [2009])
If (T , d) is a geodesic space then curvature is a local property.

Definition
Let (T , d) be a graph with a Markov chain m.Then the curvature
of the Markov chain m on the graph T is the greatest number χm
such that

χm ≤ κm(T ,R) for adjacent T and R.

Trivial observation
Under a distance-one random walk, the following is true for any
finite metric d and any pair of points T ,R:

−2
d(T ,R) ≤ κ(T ,R) ≤ 2

d(T ,R) .
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Random walks

For now, we consider three simplest random walks on various
phylogenetic tree spaces.

Metropolis-Hastings random walk: Choose a tree from the
one neighbourhood and accept it with probability
min(1, |N1(Told)|

|N1(Tnew )|).

Uniform random walk.
Uniform p-lazy random walk, where p is the laziness
probability.
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Lower bounds

Theorem (G, Whidden, Matsen [2015])
Let T and R be adjacent trees. Then both the asymptotic
curvature of the space with p-lazy uniform random walk and the
curvature of the space with uniform random walk are at least

κ(T ,R) ≥ −n2 + 2n
3.5n2 − 15n + 16 ≥ −2/5 in rSPR space,

κ(T ,R) ≥ − 4
n − 1 in DtT space,

κ(T ,R) ≥ − 4
n − 2 in NNI space,

κ(T ,R) ≥ − 8
n − 1 in rNNI space.

The bounds are tight.
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Upper bounds

Theorem (G, Whidden, and Matsen [2015])
Let T and R be adjacent trees. Then the curvature of the
following spaces with uniform random walk satisfy

κ(T ,R) ≤ 6n − 17
3n2 − 13n + 14 in rSPR space,

κ(T ,R) ≤ 1
2(n − 1) in DtT space,

κ(T ,R) ≤ 1
2(n − 2) in NNI space, and

κ(T ,R) ≤ 1
n − 1 in rNNI space.

The bounds are tight.
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Life is good, at infinity

Theorem (G, Whidden, and Matsen [2015])
Let {Tn | n ∈ N} and {Sn | n ∈ N} be two sequences of
phylogenetic trees such that d(Tn,Rn) = 1 for all n. Then

lim
n→∞

κn(Tn, Sn) = 0

for the uniform random walk on the SPR graph*, the NNI graph,
the rNNI-graph, and the DtT-graph.

*For the SPR graph, we have to bound the size of the subtree which is
getting moved.
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Whidden and Matsen [2015]

(a) 6 taxa (b) 7 taxa

Figure: Scatter plot of κ(MH;T1,T2) values versus dSPR(T1,T2) for the
rSPR graph. Colour displays the average degree of T1 and T2. Distance
values randomly perturbed (“jittered”) a small amount to avoid
superimposed points.
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Take-home message

1.00110000 = 21916.68 . . .

BUT

0.99910000 = 0.000045 . . .

The curvature of basic random walks is normally positive.
Although the spaces flatten out when the number of taxa n
grows, there always are negatively curved pieces.
Importantly, the number of those pieces grows with n.
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Thank you for your attention!
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