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Introduction
We attempt to find clusters of genes that are acti-
vated or inhibited together (functional modules), from
Protein-Protein interactions (PPI) and gene-expression
data. We do this by clustering a multigraph where
edges have been added to emphasise probable clusters.

Multigraph Method
• Rather than clustering the PPI network directly:

• We add edges between genes i, j where
min(variancei, variancej) ∗ correlationij is high

Changing activity

• We cluster the graph using the SLPA algorithm,
adapted for use on multigraphs

Simulation of PPI networks
• We simulated PPI networks with a known
community structure using a stochastic block
model

• In this model, edges are added with a higher
probability within clusters than between them
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• We merged clusters along shared edges to
produce overlapping clusters

• Each cluster was given a default state, active or
inhibited

• In each tissue, there was a small chance of the
state changing

• Gene activity was chosen randomly for each
tissue, based on the cluster state
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To evaluate the method we compare the number of
correct pairings across all found clusters in simulated
data:

• Sv : The number of other genes v should share a
cluster with, scaled according to the number of
clusters they actually share

• FC : The number of pairs of genes in the cluster
C that correctly share a cluster, scaled according
to the number of clusters they actually share

• TC :
∑

Sv for all genes v in C

• nC : The number of pairs of genes in the cluster
C

• Precision : FC
nC

• Recall : FC
TC

• F1 : 2×precision×recall
precision+recall

• We simulated 20 sets of 500 genes, each with
≈ 70 partially overlapping clusters

• Precision & recall on clusters that have more than
one member, and change state in at least one
tissue:

"cluster_info_counted" using 2:3:1
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• Precision & recall after adding co-expression
edges:

"cluster_info_counted" using 2:3:1
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• The majority of low-precision clusters are removed
• While a smaller number of clusters are found, the
majority now have high precision and F1
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• We have run this simulation and benchmark with
15,000 genes on an Intel Core i7-6600U CPU in
≈ 1 minute

Modularity
• We also calculated the Modularity Density for the
SLPA clustering:
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• Many good clusters found by SLPA had poor
modularity scores. Modularity is not a reliable
measure of accuracy
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