COSC 341 - Tutorial 1, Solutions

1. Let $A=\{0,1, b, f$, SpongeBob $\}$ and $B=\{1$, Patrick, SpongeBob, $2, f, m\}$. List the elements of:
(a) $A \cup B$ (the union of X and B)

$$
A \cup B=\{0,1,2, b, f, m, \text { SpongeBob, Patrick }\} .
$$

(b) $A \cap B$ (the intersection of A and B)

$$
A \cap B=\{1, f, \text { SpongeBob }\}
$$

(c) $A \backslash B$ (the complement of B relative to A)

$$
A \backslash B=\{0, b\}
$$

(d) $B \backslash A$ (the complement of A relative to B)

$$
B \backslash A=\{\text { Patrick, } 2, m\} .
$$

2. Set builder notation
(a) Give the set $\{0,2,4,6,8, \ldots\}$ in set builder notation

$$
\{0,2,4,6,8, \ldots\}=\{2 n \mid n \in \mathbb{N}\}
$$

(b) List the elements of $\{x \mid x \leq 5, x \in \mathbb{N}\}$

$$
\{x \mid x \leq 5, x \in \mathbb{N}\}=\{0,1,2,3,4,5\}
$$

3. Let $A=\{$ Connor, Tauiri, Hans-Christian $\}$ and $B=\{$ SpongeBob, Patrick $\}$.
(a) List all elements of $\mathcal{P}(A)$ (the power set of A)

$$
\mathcal{P}(X)=\left\{\begin{array}{c}
\emptyset,\{\text { Connor }\},\{\text { Tauiri }\},\{\text { Hans-Christian }\} \\
\{\text { Connor, Tauiri }\},\{\text { Connor, Hans-Christian }\}, \\
\{\text { Tauiri, Hans-Christian }\},\{\text { Connor, Tauiri, Hans-Christian }\}
\end{array}\right\}
$$

(b) List all the members of $A \times B$.

$$
A \times B=\left\{\begin{array}{cc}
(\text { Connor, SpongeBob }), & \text { (Connor, Patrick) } \\
(\text { Tauiri, SpongeBob }) & \text { (Tauiri, Patrick) } \\
(\text { Hans-Christian, SpongeBob }), & (\text { Hans-Christian, Patrick })
\end{array}\right\}
$$

(c) List all functions from B to A.

```
{(SpongeBob, Connor),(Patrick, Connor)}
{(SpongeBob, Connor),(Patrick, Tauiri)}
{(SpongeBob, Connor), (Patrick, Hans-Christian)}
{(SpongeBob, Tauiri), (Patrick, Connor)}
{(SpongeBob, Tauiri), (Patrick, Tauiri)}
{(SpongeBob, Tauiri), (Patrick, Hans-Christian)}
{(SpongeBob, Hans-Christian), (Patrick, Connor)}
{(SpongeBob, Hans-Christian), (Patrick, Tauiri)}
{(SpongeBob, Hans-Christian), (Patrick, Hans-Christian)}
{(SpongeBob, Connor)}
{(SpongeBob, Tauiri)}
{(SpongeBob, Hans-Christian)}
{(Patrick, Tauiri)}
{(Patrick, Hans-Christian)}
{(Patrick, Connor)}
\emptyset
```

4. Are the following functions $f: \mathbb{N} \rightarrow \mathbb{N}$ surjective, injective, bijective?
(a) $f(x)=2 x+1$
injectivity:
Let $f(x), f(y) \in \mathbb{N}$ with $f(x)=f(y)$.
$\Rightarrow 2 x-1=2 y-1$
$\Rightarrow 2 x=2 y$
$\Rightarrow x=y$
$\Rightarrow f$ is injective
surjectivity:
For $0 \in \mathbb{N}$ there is no $x \in \mathbb{N}$
with $f(x)=0$
$\Rightarrow f$ is not surjective
$\Rightarrow f$ is not bijective
(b) $f(x)=\frac{x}{2}$ (integer division, e.g. $\frac{3}{2}=1$)

injectivity:

For $1 \in \mathbb{N}$ it holds

$$
\begin{aligned}
& f(3)=\frac{3}{2}=1=\frac{2}{2}=f(2), \text { but } \\
& 3 \neq 2 \\
& \Rightarrow f \text { is not injective }
\end{aligned}
$$

surjectivity:
Let $y \in \mathbb{N}$ be an arbitrary natural number.
Let x be defined as $x=2 y$
$\Rightarrow x \in \mathbb{N}$ and $f(x)=\frac{2 y}{2}=y$
$\Rightarrow f$ is surjective
$\Rightarrow f$ is not bijective
(c) $f(x)=1$ (constant)
injectivity:

$$
\begin{aligned}
& \text { For } 0 \in \mathbb{N} \text { and } 1 \in \mathbb{N} \text { it holds } \\
& f(0)=1=f(1) \text { but } \\
& 0 \neq 1 \\
& \Rightarrow f \text { is not injective }
\end{aligned}
$$

surjectivity:
For $0 \in \mathbb{N}$ there is no $x \in \mathbb{N}$
with $f(x)=0$
$\Rightarrow f$ is not surjective
$\Rightarrow f$ is not bijective
5. Give examples of functions $f: \mathbb{N} \rightarrow \mathbb{N}$ that are bijective.

$$
\begin{aligned}
& f(x)=x \text { (identity) } \\
& f(x)= \begin{cases}x+1 & \text { if } x \text { is even } \\
x-1 & \text { if } x \text { is odd }\end{cases} \\
& f(x)= \begin{cases}1 & \text { if } x=0 \\
0 & \text { if } x=1 \\
x & \text {,else }\end{cases}
\end{aligned}
$$

