COSC 341 - Tutorial 2, Solutions

1. Let $A=\{a, b, c\}$ be a set.
(a) Define a relation R on A that is irreflexive, asymmetric, and not transitive

$$
R=\{(a, b),(b, c)\}
$$

(b) Extend R to a relation R^{\prime} that is reflexive

$$
R^{\prime}=\{(a, b),(b, c),(a, a),(b, b),(c, c)\}
$$

(c) Extend R^{\prime} to a relation $R^{\prime \prime}$ that is symmetric

$$
R^{\prime \prime}=\{(a, b),(b, c),(a, a),(b, b),(c, c),(b, a),(c, b)\}
$$

(d) Extend $R^{\prime \prime}$ to a relation $R^{\prime \prime \prime}$ that is transitive

$$
R^{\prime \prime \prime}=\{(a, b),(b, c),(a, a),(b, b),(c, c),(b, a),(c, b),(a, c),(c, a)\}
$$

2. Are the following relations reflexive, symmetric, transitive? If they are: How many equivalence classes do they have?
(a) \sim on \mathbb{N} with: $a \sim b \Longleftrightarrow a$ divides $b\left(\frac{b}{a} \in \mathbb{N}\right)$
i. reflexive:

$$
\begin{aligned}
& \frac{0}{0} \notin \mathbb{N} \\
\Rightarrow & 0 \nsim 0 \\
\Rightarrow & \sim \text { is not reflexive }
\end{aligned}
$$

ii. symmetric:

$$
\begin{aligned}
& \frac{2}{1} \in \mathbb{N}, \text { but } \frac{1}{1} \notin \mathbb{N} \\
\Rightarrow & 1 \sim 2, \text { but } 2 \nsim 1 \\
\Rightarrow & \sim \text { is not symmetric }
\end{aligned}
$$

iii. transitive:

$$
\begin{aligned}
& \text { Let } a \sim b, b \sim c \\
\Rightarrow & \frac{b}{a} \in \mathbb{N}, \frac{c}{b} \in \mathbb{N} \\
\Rightarrow & \frac{c}{a}=\frac{c \cdot b}{a \cdot b}=\frac{c}{b} \cdot \frac{b}{a} \in \mathbb{N}, \\
& \text { because } \frac{c}{b} \in \mathbb{N} \text { and } \frac{b}{a} \in \mathbb{N} \\
\Rightarrow & a \sim c \\
\Rightarrow & \sim \text { is transitive }
\end{aligned}
$$

(b) \sim on $\mathcal{P}(\mathbb{N})$ with: $A \sim B \Longleftrightarrow A \cap B=\emptyset$
i. reflexive:

$$
\begin{aligned}
& A \cap A=A \neq \emptyset \text { for all } A \neq \emptyset \\
\Rightarrow & A \nsim A \text { for all } A \neq \emptyset \\
\Rightarrow & \sim \text { is not reflexive }
\end{aligned}
$$

ii. symmetric:

$$
\begin{aligned}
& \text { Let } A \sim B \\
\Rightarrow & A \cap B=\emptyset \\
\Rightarrow & B \cap A=A \cap B=\emptyset \\
\Rightarrow & B \sim A \\
\Rightarrow & \sim \text { is symmetric }
\end{aligned}
$$

iii. transitive:

$$
\begin{aligned}
& \text { Let } A=\{1,2\}, B=\{3,4\}, C=\{1,2\} \\
\Rightarrow & A \cap B=\emptyset, B \cap C=\emptyset, \text { but } A \cap C \neq \emptyset \\
\Rightarrow & A \sim B, B \sim C, \text { but } A \nsim C \\
\Rightarrow & \sim \text { is not transitive }
\end{aligned}
$$

(c) \sim on \mathbb{N} with: $a \sim b \Longleftrightarrow a$ and b have the same last digit
i. reflexive:

$$
\begin{aligned}
& a \text { has the same last digit as itself } \\
\Rightarrow & a \sim a \\
\Rightarrow & \sim \text { is reflexive }
\end{aligned}
$$

ii. symmetric:

$$
\text { Let } a \sim b
$$

$\Rightarrow a$ and b have the same last digit
$\Rightarrow b$ and a have the same last digit
$\Rightarrow b \sim a$
$\Rightarrow \sim$ is symmetric
iii. transitive:

Let $a \sim b$ and $b \sim c$
$\Rightarrow a$ and b have the same last digit and b and c have the same last digit
$\Rightarrow a$ and c have the same last digit
$\Rightarrow a \sim c$
$\Rightarrow \sim$ is transitive
$\Rightarrow \sim$ is an equivalence relation
Each equivalence class is determined by the last digit of one (and hence every) element in it. Thus there are 10 equivalence classes:

$$
\begin{aligned}
& \{0,10,20, \ldots, 100,110,120, \ldots, 1000,1010, \ldots\} \\
& \{1,11,21, \ldots, 101,111,121, \ldots, 1001,1011, \ldots\} \\
& \{2,12,22, \ldots, 102,112,122, \ldots, 1002,1012, \ldots\} \\
& \vdots \\
& \{9,19,29, \ldots, 109,119,129, \ldots, 1009,1019, \ldots\}
\end{aligned}
$$

Homework

1. Are the following relations reflexive, symmetric, transitive? If they are: How many equivalence classes do they have?
(a) \sim on $\mathcal{P}(\mathbb{N})$ with: $A \sim B \Longleftrightarrow A \subseteq B$
i. reflexive:

$$
\begin{aligned}
& A \subseteq A \text { for all } A \in \mathbb{N} \\
\Rightarrow & A \sim A \text { for all } A \in \mathbb{N} \\
\Rightarrow & \sim \text { is reflexive }
\end{aligned}
$$

ii. symmetric:

$$
\begin{aligned}
& \text { Let } A=\{1\}, B=\{1,2\} \\
\Rightarrow & A \subseteq B, \text { but } B \nsubseteq A \\
\Rightarrow & A \sim B, \text { but } B \nsim A \\
\Rightarrow & \sim \text { is not symmetric }
\end{aligned}
$$

iii. transitive:

$$
\begin{aligned}
& \text { Let } A \sim B \text { and } B \sim C \\
\Rightarrow & A \subseteq B \text { and } B \subseteq C \\
\Rightarrow & A \subseteq B \subseteq C \\
\Rightarrow & A \subseteq C \\
\Rightarrow & A \sim C \\
\Rightarrow & \sim \text { is transitive }
\end{aligned}
$$

(b) \sim on \mathbb{Z} with: $a \sim b \Longleftrightarrow a-b$ is a multiple of 8
i. reflexive:

$$
\begin{aligned}
& \quad a-a=0=0 \cdot 8 \text { is a multiple of } 8 \text { for all } a \in \mathbb{N} \\
& \Rightarrow a \sim a \text { for all } a \in \mathbb{N} \\
& \Rightarrow \sim \text { is reflexive }
\end{aligned}
$$

ii. symmetric:

$$
\begin{aligned}
& \text { Let } a \sim b \\
\Rightarrow & a-b \text { is a multiple of } 8 \\
\Rightarrow & \text { There exists a } k \text { with } 8 k=a-b \\
\Rightarrow & b-a=-(a-b)=-8 k=8 k^{\prime} \\
\Rightarrow & b-a \text { is a multiple of } 8 \\
\Rightarrow & \sim \text { is symmetric }
\end{aligned}
$$

iii. transitive:

Let $a \sim b$ and $b \sim c$
\Rightarrow There exist k, l with $8 k=a-b, 8 l=b-c$
$\Rightarrow a-c=a-b+b-c=8 k+8 l=8(k+l)$
$\Rightarrow a \sim c$
$\Rightarrow \sim$ is transitive
$\Rightarrow \sim$ is an equivalence relation
Every natural number is equivalent to a unique number between 0 and 7 inclusive (the remainder on division by 8) so there are 8 equivalence classes.
(c) \sim on $\mathcal{P}(\mathbb{N})$ with: $A \sim B \Longleftrightarrow A \cap B \neq \emptyset$
i. reflexive:

$$
\begin{aligned}
& \text { Let } A=\emptyset \\
\Rightarrow & A \cap A=\emptyset \\
\Rightarrow & A \nsim A \\
\Rightarrow & \sim \text { is not reflexive }
\end{aligned}
$$

ii. symmetric:

$$
\begin{aligned}
& \text { Let } A \sim B \\
\Rightarrow & A \cap B \neq \emptyset \\
\Rightarrow & B \cap A=A \cap B \neq \emptyset \\
\Rightarrow & B \sim A \\
\Rightarrow & \sim \text { is symmetric }
\end{aligned}
$$

iii. transitive:

Let $A=\{1,2\}, B=\{1,3\}, C=\{3,4\}$
$\Rightarrow A \cap B=\{1\} \neq \emptyset, B \cap C=\{3\} \neq \emptyset$, but $A \cap C=\emptyset$
$\Rightarrow A \sim B, B \sim C$, but $A \nsim C$
$\Rightarrow \sim$ is not transitive

