COSC 341 – Tutorial 3

- 1. Show that the set of even natural numbers is countable.
- 2. Show that the set of even integers is countable.
- 3. Show that the set $\{f | f : \mathbb{N} \to \mathbb{N}\}$ of all functions from \mathbb{N} to \mathbb{N} is uncountable.

Homework

- 1. Show that the set of total functions from \mathbb{N} to $\{0,1\}$ is uncountable.
- 2. We can define the set $\mathbb N$ of natural numbers as:

$$0\in\mathbb{N}$$
 If $n\in\mathbb{N},$ then $n+1\in\mathbb{N}$

We call this a *recursive* definition. Give recursive definitions of:

- (a) The set of even natural numbers $EN = \{2n | n \in \mathbb{N}\}\$
- (b) The set $P = \{1, 2, 4, 8, 16, \ldots\}$ of powers of 2 within \mathbb{N}