COSC 341 - Tutorial 3, Solutions

1. Show that the set of even natural numbers is countable.

Let $E N=\{n \mid n \in \mathbb{N}, n$ is even $\}$ denote the set of even natural numbers and let $f: \mathbb{N} \rightarrow E N$ be a function from \mathbb{N} to $E N$ with $f(n)=2 n$. For proving that $E N$ is countable we will prove that f is bijective:
(a) injectivity:

$$
\begin{aligned}
& \text { Let } f(n)=f(m) \in E N \\
& \Rightarrow 2 n=f(n)=f(m)=2 m \\
& \Rightarrow n=m \\
& \Rightarrow \mathrm{f} \text { is injective }
\end{aligned}
$$

(b) surjectivity:

Let $m \in E N$ be an arbitrary element of $E N$ and let $n=\frac{m}{2} \in \mathbb{N}$
$\Rightarrow f(n)=f\left(\frac{m}{2}\right)=m$
$\Rightarrow \mathrm{f}$ is surjective
2. Show that the set of even integers is countable.

Let $E Z$ denote the set of even integers and let $f: \mathbb{N} \rightarrow E Z$ with

$$
f(n)= \begin{cases}n & \text { if } n \text { is even } \\ -n-1 & \text { if } n \text { is odd }\end{cases}
$$

For proving that $E Z$ is countable we will prove that f is bijective:
(a) injectivity:

$$
\begin{aligned}
& \text { Let } f(n)=f(m) \in E Z \text { be an arbitrary element of } E Z \\
& \Rightarrow \text { It is either } f(n)=f(m) \geq 0 \text { or } f(n)=f(m)<0 \\
& \text { If } f(n)=f(m) \geq 0 \\
& \Rightarrow n=f(n)=f(m)=m \\
& \Rightarrow n=m \\
& \text { If } f(n)=f(m)<0 \\
& \Rightarrow-n-1=f(n)=f(m)=-m-1 \\
& \Rightarrow n=m \\
& \Rightarrow \mathrm{f} \text { is injective }
\end{aligned}
$$

(b) surjectivity:

Let $z \in E Z$
If $z \geq 0 \Rightarrow$ For $x=z \in \mathbb{N}$ it holds $f(x)=f(z)=z$
If $z<0 \Rightarrow$ For $x=-z-1 \in \mathbb{N}$ it holds $f(x)=f(-z-1)=z$
$\Rightarrow \mathrm{f}$ is surjective
3. Show that the set $\{f \mid f: \mathbb{N} \rightarrow \mathbb{N}\}$ of all functions from \mathbb{N} to \mathbb{N} is uncountable.

Suppose to the contrary that $\{f \mid f: \mathbb{N} \rightarrow \mathbb{N}\}$ is countable. List each function as f_{0}, f_{1}, \ldots.

	0	1	2	3	\cdots
f_{0}	$f_{0}(0)$	$f_{0}(1)$	$f_{0}(2)$	$f_{0}(3)$	\cdots
f_{1}	$f_{1}(0)$	$f_{1}(1)$	$f_{1}(2)$	$f_{1}(3)$	\cdots
f_{2}	$f_{2}(0)$	$f_{2}(1)$	$f_{2}(2)$	$f_{2}(3)$	\cdots
\vdots	\vdots	\vdots	\vdots	\vdots	\ddots

Now define the function $f: \mathbb{N} \rightarrow \mathbb{N}$ by:

$$
f(n)=f_{n}(n)+1
$$

By the definition of f it is different to every function in our list. Therefore our list does not include all possible functions which contradicts our assumption that $\{f \mid f: \mathbb{N} \rightarrow \mathbb{N}\}$ is countable. Therefore $\{f \mid f: \mathbb{N} \rightarrow \mathbb{N}\}$ must be uncountable.

Homework

1. Show that the set of total functions from \mathbb{N} to $\{0,1\}$ is uncountable.

As with all diagonal arguments, we argue by contradiction. Suppose, contrary to what we want to prove, that the set of total functions from \mathbb{N} to $\{0,1\}$ were countable. In that case we could list all these functions as:

$$
f_{0}, f_{1}, f_{2}, \ldots
$$

Now we define a function $g: \mathbb{N} \rightarrow\{0,1\}$ that does not appear in the list (achieving our contradiction). We simply set, for each $i \in \mathbb{N}$:

$$
g(i)=1-f_{i}(i)
$$

(so if $f_{i}(i)=1, g(i)=0$ and vice versa). Thus, for any i, g disagrees with f_{i} at at least one point (namely i) and possibly many others, i.e. $g \neq f_{i}$ for any i. So our list of functions was not complete as we claimed it was, and hence no such list can exist.
2. We can define the set \mathbb{N} of natural numbers as:

$$
\begin{aligned}
& 0 \in \mathbb{N} \\
& \text { If } n \in \mathbb{N} \text {, then } n+1 \in \mathbb{N}
\end{aligned}
$$

We call this a recursive definition.
Give recursive definitions of:
(a) The set of even natural numbers $E N=\{2 n \mid n \in \mathbb{N}\}$

$$
\begin{aligned}
& 0 \in E N \\
& \text { If } n \in E N \text {, then } n+2 \in E N
\end{aligned}
$$

(b) The set $P=\{1,2,4,8,16, \ldots\}$ of powers of 2 within \mathbb{N}

$$
\begin{aligned}
& 1 \in P \\
& \text { If } n \in P \text {, then } n+n \in P
\end{aligned}
$$

