COSC 341 - Tutorial 4, Solutions

1. Give a recursive definition of the set B of unlabelled complete binary trees.

Basis () $\in B$
Recursive step If $b \in B$, then $(b b) \in B$
2. Show that the power set $\mathcal{P}(\mathbb{N})$ of \mathbb{N} is uncountable.

As with all diagonal arguments, we argue by contradiction. Suppose, contrary to what we want to prove, that $\mathcal{P}(\mathbb{N})$ were countable. In that case we could list all subsets of \mathbb{N} as:

$$
A_{0}, A_{1}, A_{4}, \ldots
$$

Now we define a set $A=\left\{i \mid i \in \mathbb{N}, i \notin A_{i}\right\} \subseteq \mathbb{N}$. There is no k for which $A=A_{k}$. If there was such a k, it would either be

$$
\begin{aligned}
k \in A & \left.\Rightarrow k \notin A_{k}=A \text { (by the definition of } A\right) \\
\text { or } k \notin A & \Rightarrow k \in A=A_{k} \text { contradiction } \\
\text { (by the definition of } A) & \Rightarrow \text { contradiction }
\end{aligned}
$$

So our list of subsets was not complete as we claimed it was, and hence no such list can exist.
3. Design a finite automaton on the alphabet $\{a, b\}$ that accepts:
(a) all words starting with $a b$

(b) all words containing the substring $b b$

Homework

1. Design a finite automaton on the alphabet $\{a, b\}$ that accepts:
(a) all words containing exactly two a 's

(b) all words of even length

(c) all words consisting of an even number of a 's and an even number of b 's

2. Give a simple recursive definition of the language Eq consisting of strings over $\{a, b\}$ which have an equal number of a 's and b 's.

Basis The empty string belongs to Eq
Recursive step If $u \in \mathrm{Eq}$ and u can be written $x y$, then axby and bxay belong to Eq

