COSC 341 – Tutorial 4, Solutions

1. Give a recursive definition of the set B of unlabelled complete binary trees.

Basis $() \in B$

Recursive step If $b \in B$, then $(bb) \in B$

2. Show that the power set $\mathcal{P}(\mathbb{N})$ of \mathbb{N} is uncountable.

As with all diagonal arguments, we argue by contradiction. Suppose, contrary to what we want to prove, that $\mathcal{P}(\mathbb{N})$ were countable. In that case we could list all subsets of \mathbb{N} as:

 A_0, A_1, A_4, \dots

Now we define a set $A = \{i | i \in \mathbb{N}, i \notin A_i\} \subseteq \mathbb{N}$. There is no k for which $A = A_k$. If there was such a k, it would either be

 $k \in A \Rightarrow k \notin A_k = A$ (by the definition of A) \Rightarrow contradiction or $k \notin A \Rightarrow k \in A = A_k$ (by the definition of A) \Rightarrow contradiction

So our list of subsets was not complete as we claimed it was, and hence no such list can exist.

- 3. Design a finite automaton on the alphabet $\{a, b\}$ that accepts:
 - (a) all words starting with ab

(b) all words containing the substring bb

Homework

- 1. Design a finite automaton on the alphabet $\{a, b\}$ that accepts:
 - (a) all words containing exactly two a's

(b) all words of even length

$$> \textcircled{m} \xrightarrow{a,b} \textcircled{a,b}$$

(c) all words consisting of an even number of a's and an even number of b's

$$\begin{array}{c} & & & \\ &$$

2. Give a simple recursive definition of the language Eq consisting of strings over $\{a, b\}$ which have an equal number of a's and b's.

Basis The empty string belongs to Eq

Recursive step If $u \in \mathsf{Eq}$ and u can be written xy, then axby and bxay belong to Eq