COSC 341 - Tutorial 6

1. Construct an NFA on the alphabet $\{a, b\}$ that accepts the language of all words containing the substring $b b$. Construct a DFA that is equivalent to M.
2. Let M be following NFA on the alphabet $\{a, b\}$:

Give the λ-closure for each state. Construct a DFA that is equivalent to M.
3. Build an NFA on the alphabet $\{a, b\}$ that accepts the language $L_{1}=\{a, a b a, a b a b a, a b a b a b a, \ldots\}$ and one that accepts the language L_{2} of all words that do not contain b 's. Use λ-transitions to combine them into an NFA accepting L_{1} and L_{2}. Convert that NFA to an equivalent DFA.
4. Use the pumping lemma to show that the language $L=\left\{a^{n} b^{n+1} \mid n \geq 0\right\}$ is not an automatic language.

Homework

1. Build an NFA on the alphabet $\{a, b\}$ that accepts the language $L_{1}=\{a b, a b a b, a b a b a b, a b a b a b a b, \ldots\}$ and one that accepts the language $L_{2}=\{b a, b a b a, b a b a b a, b a b a b a b a, \ldots\}$. Use λ-transitions to combine them into an NFA accepting L_{1} and L_{2}. Convert that NFA to an equivalent DFA.
2. Use the pumping lemma to show that none of the following languages are automatic languages:
(a) $L=\left\{a^{n} b^{2 n} \mid n \geq 0\right\}$.
(b) $L=\left\{a^{n} b^{m} \mid n \leq m\right\}$.
