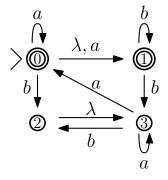
COSC 341 – Tutorial 6

- 1. Construct an NFA on the alphabet $\{a, b\}$ that accepts the language of all words containing the substring bb. Construct a DFA that is equivalent to M.
- 2. Let M be following NFA on the alphabet $\{a, b\}$:



Give the λ -closure for each state. Construct a DFA that is equivalent to M.

- 3. Build an NFA on the alphabet $\{a, b\}$ that accepts the language $L_1 = \{a, aba, ababa, abababa, \dots\}$ and one that accepts the language L_2 of all words that do not contain b's. Use λ -transitions to combine them into an NFA accepting L_1 and L_2 . Convert that NFA to an equivalent DFA.
- 4. Use the *pumping lemma* to show that the language $L = \{a^n b^{n+1} | n \ge 0\}$ is not an automatic language.

Homework

- 1. Build an NFA on the alphabet $\{a, b\}$ that accepts the language $L_1 = \{ab, abab, ababab, abababab, ...\}$ and one that accepts the language $L_2 = \{ba, baba, bababa, babababa, ...\}$. Use λ -transitions to combine them into an NFA accepting L_1 and L_2 . Convert that NFA to an equivalent DFA.
- 2. Use the pumping lemma to show that none of the following languages are automatic languages:
 - (a) $L = \{a^n b^{2n} \mid n \ge 0\}.$
 - (b) $L = \{a^n b^m \mid n \le m\}.$