COSC 341 - Tutorial 6 (Solution)

1. Construct an NFA on the alphabet $\{a, b\}$ that accepts the language of all words containing the substring $b b$. Construct a DFA that is equivalent to M.
NFA:

DFA:

2. Build an NFA on the alphabet $\{a, b\}$ that accepts the language $L_{1}=\{a, a b a, a b a b a, a b a b a b a, \ldots\}$ and one that accepts the language L_{2} of all words that do not contain b 's. Use λ-transitions to combine them into an NFA accepting L_{1} and L_{2}. Convert that NFA to an equivalent DFA.

NFA for both languages:

DFA equivalent to that NFA:

Homework

1. Build an NFA that accepts the language $L_{1}=\{a b, a b a b, a b a b a b, a b a b a b a b, \ldots\}$ and one that accepts the language $L_{2}=\{b a, b a b a, b a b a b a, b a b a b a b a, \ldots\}$. Use λ-transitions to combine them into an NFA accepting L_{1} and L_{2}. Convert that NFA to an equivalent DFA.
L_{1} :
$L_{2}:$
$>$ (1) \xrightarrow{a} (2) $\stackrel{b}{\underset{a}{\longleftrightarrow}}$ (3)

NFA for both languages:

DFA equivalent to that NFA:

