COSC 341 - Tutorial 7 (Solution)

1. Are the following languages automatic languages? If so, construct an NFA for that language. If not, prove that the language is not automatic.
(a) $L=\{w \mid$ in w every a is followed by a $b\}$
L is automatic since we can define an NFA that accepts L :

(b) $L=\{w \mid$ for every a in w there is a distinct b following $a\}$

We will prove that L is not automatic.
For contradiction we assume that L is automatic.
Let us consider $z=a^{k} b^{k} \in L,|z| \geq k$. Because of the Pumping Lemma there are u, v and w such that $z=u v w$ with $|u|+|v| \leq k,|v|>0$, and $u v^{i} w \in L$ for all $i \geq 0$. From $|u|+|v| \leq k,|v|>0$ we can follow that $u=a^{|u|}, v=a^{|v|}$, and $w=a^{k-(|u|+|v|)} b^{k}$.
By the Pumping Lemma, $u v^{2} w$ is element of L as well. It is

$$
u v^{2} w=a^{|u|} a^{2|v|} a^{k-(|u|+|v|)} b^{k}=a^{k+|v|} b^{k}
$$

with $|v|>0$. Therefore, $u v^{2} w$ being an element of L is a contradiction to the definition of L. We conclude that L is not an automatic language.
(c) $L=\left\{a^{i} \mid i\right.$ is prime $\}$

We will prove that L is not automatic.
For contradiction we assume that L is automatic.
Because of the Pumping Lemma we know that there is a $k>0$ such that if $z \in L,|z| \geq k$, there are u, v and w such that $z=u v w$ with $|u|+|v| \leq k,|v|>0$, and $u v^{i} w \in L$ for all $i \geq 0$. Let n be a prime number greater than k. We can apply the Pumping Lemma on $z=a^{n}$ and know that there are u, v, w with the properties stated above.
In particular, the Pumping Lemma implies that $u v^{n+1} w \in L$. But it is

$$
\begin{aligned}
\operatorname{length}\left(u v^{n+1} w\right) & =\operatorname{length}\left(u v v^{n} w\right) \\
& =\operatorname{length}(u v w)+\operatorname{length}\left(v^{n}\right) \\
& =n+\operatorname{length}(v) \cdot n \\
& =n(1+\operatorname{length}(v))
\end{aligned}
$$

This implies that $u v^{n+1} w$ is not prime which is a contradiction to the definition of L.
We conclude that L is not an automatic language.
(d) $L=\left\{a^{n} b^{n+1} \mid n \geq 0\right\}$

We will prove that L is not automatic.
For contradiction we assume that L is automatic.
Let us consider $z=a^{k} b^{k+1} \in L,|z| \geq k$. Because of the Pumping Lemma there are u, v and w such that $z=u v w$ with $|u|+|v| \leq k,|v|>0$, and $u v^{i} w \in L$ for all $i \geq 0$. From $|u|+|v| \leq k,|v|>0$ we can follow that $u=a^{|u|}, v=a^{|v|}$, and $w=a^{k-(|u|+|v|)} b^{k+1}$.
By the Pumping Lemma, $u v^{2} w$ is element of L as well. It is

$$
u v^{2} w=a^{|u|} a^{2|v|} a^{k-(|u|+|v|)} b^{k+1}=a^{k+|v|} b^{k+1}
$$

with $|v|>0$. Therefore, $u v^{2} w$ being an element of L is a contradiction to the definition of L. We conclude that L is not an automatic language.

Homework

1. Are the following languages automatic languages? If so, construct an NFA for that language. If not, prove that the language is not automatic.
(a) $L=\left\{a^{i} \mid i=n^{2}, n \in \mathbb{N}\right\}$

We will prove that L is not automatic.
For contradiction we assume that L is automatic.
Because of the Pumping Lemma we know that there is a $k>0$ such that if $z \in L,|z| \geq k$, there are u, v and w such that $z=u v w$ with $|u|+|v| \leq k,|v|>0$, and $u v^{i} w \in L$ for all $i \geq 0$.
We can apply the Pumping Lemma on $z=a^{k^{2}}$ and know that there are u, v, w with the properties stated above.
In particular, the Pumping Lemma implies that $u v^{2} w \in L$. But it is

$$
\begin{aligned}
\text { length }\left(u v^{2} w\right) & =\text { length }(\text { uvw })+\text { length }(v) \\
& =k^{2}+\text { length }(v) \\
& \leq k^{2}+k \\
& <k^{2}+2 k+1 \\
& =(k+1)^{2}
\end{aligned}
$$

Hence, it is $k^{2}<\operatorname{length}\left(u v^{2} w\right)<(k+1)^{2}$. So we can not find an $n \in \mathbb{N}$ such that length $\left(u v^{2} w\right)=a^{n^{2}}$, which is a contradiction to $u v^{2} w \in L$.
We conclude that L is not an automatic language.
(b) $L=\left\{w \mid w \in\{a, b\}^{*}\right.$, the total number of a 's and b 's in w is divisible by 3$\}$
L is automatic since we can define an NFA that accepts L :

