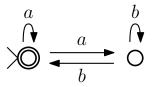
COSC 341 – Tutorial 7 (Solution)

- 1. Are the following languages automatic languages? If so, construct an NFA for that language. If not, prove that the language is not automatic.
 - (a) $L = \{w | \text{ in } w \text{ every } a \text{ is followed by a } b\}$ L is automatic since we can define an NFA that accepts L:



(b) $L = \{w | \text{ for every } a \text{ in } w \text{ there is a distinct } b \text{ following } a \}$

We will prove that L is not automatic.

For contradiction we assume that L is automatic.

Let us consider $z = a^k b^k \in L, |z| \ge k$. Because of the Pumping Lemma there are u, v and w such that z = uvw with $|u| + |v| \le k$, |v| > 0, and $uv^i w \in L$ for all $i \ge 0$. From $|u| + |v| \le k$, |v| > 0 we can follow that $u = a^{|u|}, v = a^{|v|}$, and $w = a^{k-(|u|+|v|)}b^k$.

By the Pumping Lemma, uv^2w is element of L as well. It is

$$uv^{2}w = a^{|u|}a^{2|v|}a^{k-(|u|+|v|)}b^{k} = a^{k+|v|}b^{k}$$

with |v| > 0. Therefore, uv^2w being an element of L is a contradiction to the definition of L. We conclude that L is not an automatic language.

(c) $L = \{a^i | i \text{ is prime}\}$

We will prove that L is not automatic.

For contradiction we assume that L is automatic.

Because of the Pumping Lemma we know that there is a k > 0 such that if $z \in L, |z| \ge k$, there are u, v and w such that z = uvw with $|u| + |v| \le k$, |v| > 0, and $uv^i w \in L$ for all $i \ge 0$. Let n be a prime number greater than k. We can apply the Pumping Lemma on $z = a^n$ and know that there are u, v, w with the properties stated above.

In particular, the Pumping Lemma implies that $uv^{n+1}w \in L$. But it is

$$length(uv^{n+1}w) = length(uvv^{n}w)$$
$$= length(uvw) + length(v^{n})$$
$$= n + length(v) \cdot n$$
$$= n(1 + length(v))$$

This implies that $uv^{n+1}w$ is not prime which is a contradiction to the definition of L. We conclude that L is not an automatic language.

(d) $L = \{a^n b^{n+1} \mid n \ge 0\}$

We will prove that L is not automatic.

For contradiction we assume that L is automatic.

Let us consider $z = a^k b^{k+1} \in L, |z| \ge k$. Because of the Pumping Lemma there are u, vand w such that z = uvw with $|u| + |v| \le k$, |v| > 0, and $uv^i w \in L$ for all $i \ge 0$. From $|u| + |v| \le k$, |v| > 0 we can follow that $u = a^{|u|}, v = a^{|v|}$, and $w = a^{k - (|u| + |v|)}b^{k+1}$. By the Pumping Lemma, uv^2w is element of L as well. It is

$$uv^{2}w = a^{|u|}a^{2|v|}a^{k-(|u|+|v|)}b^{k+1} = a^{k+|v|}b^{k+1}$$

with |v| > 0. Therefore, uv^2w being an element of L is a contradiction to the definition of L. We conclude that L is not an automatic language.

Homework

- 1. Are the following languages automatic languages? If so, construct an NFA for that language. If not, prove that the language is not automatic.
 - (a) $L = \{a^i | i = n^2, n \in \mathbb{N}\}$

We will prove that L is not automatic.

For contradiction we assume that L is automatic.

Because of the Pumping Lemma we know that there is a k > 0 such that if $z \in L, |z| \ge k$, there are u, v and w such that z = uvw with $|u| + |v| \le k$, |v| > 0, and $uv^i w \in L$ for all $i \ge 0$. We can apply the Pumping Lemma on $z = a^{k^2}$ and know that there are u, v, w with the properties stated above.

In particular, the Pumping Lemma implies that $uv^2w \in L$. But it is

$$length(uv^{2}w) = length(uvw) + length(v)$$
$$= k^{2} + length(v)$$
$$\leq k^{2} + k$$
$$< k^{2} + 2k + 1$$
$$= (k + 1)^{2}$$

Hence, it is $k^2 < length(uv^2w) < (k+1)^2$. So we can not find an $n \in \mathbb{N}$ such that $length(uv^2w) = a^{n^2}$, which is a contradiction to $uv^2w \in L$.

We conclude that L is not an automatic language.

(b) $L = \{w | w \in \{a, b\}^*$, the total number of a's and b's in w is divisible by 3} L is automatic since we can define an NFA that accepts L:

