COSC 341 - Tutorial 8/9 (Solution)

- 1. Are the following languages automatic languages? If so, construct an NFA for that language. If not, prove that the language is not automatic.
 - (a) $L = \{w | w \text{ is a palindrome over } \{a, b\}\}$

We will prove that L is not automatic.

For contradiction we assume that L is automatic.

Let us consider $z = a^k b a^k \in L, |z| \ge k$. Because of the Pumping Lemma there are u, vand w such that z = uvw with $|u| + |v| \le k$, |v| > 0, and $uv^i w \in L$ for all $i \ge 0$. From $|u| + |v| \le k$, |v| > 0 we can follow that $u = a^{|u|}$, and $v = a^{|v|}$.

By the Pumping Lemma, uv^2w is element of L as well. It is

$$uv^2w = a^{k+|v|}ba^k$$

with |v| > 0. Therefore, uv^2w being an element of L is a contradiction to the definition of L. We conclude that L is not an automatic language.

(b) $L = \{a^n b^m | n, m \in \mathbb{N}\}$

We prove that L is automatic by giving an automaton accepting L.

(c) $L = \{a^n b^m | n < m\}$

We will prove that L is not automatic.

For contradiction we assume that ${\cal L}$ is automatic.

Let us consider $z = a^k b^{k+1} \in L, |z| \ge k$. Because of the Pumping Lemma there are u, v and w such that z = uvw with $|u| + |v| \le k$, |v| > 0, and $uv^i w \in L$ for all $i \ge 0$. From $|u| + |v| \le k$, |v| > 0 we can follow that $u = a^{|u|}$, and $v = a^{|v|}$.

By the Pumping Lemma, uv^2w is element of L as well. It is

$$uv^2w = a^{k+|v|}b^{k+1}$$

with |v| > 0. Therefore, uv^2w being an element of L is a contradiction to the definition of L. We conclude that L is not an automatic language.

(d) $L = \{ww | w \in \{a, b\}^*\}$

We will prove that L is not automatic.

For contradiction we assume that L is automatic.

Let us consider $z = a^k b a^k b \in L, |z| \ge k$. Because of the Pumping Lemma there are u, vand w such that z = uvw with $|u| + |v| \le k$, |v| > 0, and $uv^i w \in L$ for all $i \ge 0$. From $|u| + |v| \le k$, |v| > 0 we can follow that $u = a^{|u|}$, and $v = a^{|v|}$.

By the Pumping Lemma, uv^2w is element of L as well. It is

$$uv^2w = a^{k+|v|}ba^kb$$

with |v| > 0. Therefore, uv^2w being an element of L is a contradiction to the definition of L. We conclude that L is not an automatic language.

Homework

- 1. Are the following languages automatic languages? If so, construct an NFA for that language. If not, prove that the language is not automatic.
 - (a) $L = \{w | w \text{ has twice as many } a$'s as b's $\}$

We will prove that L is not automatic.

For contradiction we assume that L is automatic.

Let us consider $z = a^{2k}b^k \in L, |z| \ge k$. Because of the Pumping Lemma there are u, v and w such that z = uvw with $|u| + |v| \le k$, |v| > 0, and $uv^iw \in L$ for all $i \ge 0$. From $|u| + |v| \le k$, |v| > 0 we can follow that $u = a^{|u|}$, and $v = a^{|v|}$.

By the Pumping Lemma, uv^2w is element of L as well. It is

$$uv^2w = a^{2k+|v|}b^k$$

with |v| > 0. Therefore, uv^2w being an element of L is a contradiction to the definition of L. We conclude that L is not an automatic language.

(b) $L = \{w | w \in \{a, b\}^*$, the total number of *a*'s and *b*'s is odd} We prove that *L* is not automatic by giving an automaton accepting *L*.

$$> \mathbb{O} \xrightarrow{a,b}{ \overbrace{a,b}} \mathbb{O}$$