## COSC 341 - Tutorial 8/9 (Solution)

1. Are the following languages automatic languages? If so, construct an NFA for that language. If not, prove that the language is not automatic.
(a) $L=\{w \mid w$ is a palindrome over $\{a, b\}\}$

We will prove that $L$ is not automatic.
For contradiction we assume that $L$ is automatic.
Let us consider $z=a^{k} b a^{k} \in L,|z| \geq k$. Because of the Pumping Lemma there are $u, v$ and $w$ such that $z=u v w$ with $|u|+|v| \leq k,|v|>0$, and $u v^{i} w \in L$ for all $i \geq 0$. From $|u|+|v| \leq k,|v|>0$ we can follow that $u=a^{|u|}$, and $v=a^{|v|}$.
By the Pumping Lemma, $u v^{2} w$ is element of $L$ as well. It is

$$
u v^{2} w=a^{k+|v|} b a^{k}
$$

with $|v|>0$. Therefore, $u v^{2} w$ being an element of $L$ is a contradiction to the definition of $L$. We conclude that $L$ is not an automatic language.
(b) $L=\left\{a^{n} b^{m} \mid n, m \in \mathbb{N}\right\}$

We prove that $L$ is automatic by giving an automaton accepting $L$.

(c) $L=\left\{a^{n} b^{m} \mid n<m\right\}$

We will prove that $L$ is not automatic.
For contradiction we assume that $L$ is automatic.
Let us consider $z=a^{k} b^{k+1} \in L,|z| \geq k$. Because of the Pumping Lemma there are $u, v$ and $w$ such that $z=u v w$ with $|u|+|v| \leq k,|v|>0$, and $u v^{i} w \in L$ for all $i \geq 0$. From $|u|+|v| \leq k,|v|>0$ we can follow that $u=a^{|u|}$, and $v=a^{|v|}$.
By the Pumping Lemma, $u v^{2} w$ is element of $L$ as well. It is

$$
u v^{2} w=a^{k+|v|} b^{k+1}
$$

with $|v|>0$. Therefore, $u v^{2} w$ being an element of $L$ is a contradiction to the definition of $L$. We conclude that $L$ is not an automatic language.
(d) $L=\left\{w w \mid w \in\{a, b\}^{*}\right\}$

We will prove that $L$ is not automatic.
For contradiction we assume that $L$ is automatic.
Let us consider $z=a^{k} b a^{k} b \in L,|z| \geq k$. Because of the Pumping Lemma there are $u, v$ and $w$ such that $z=u v w$ with $|u|+|v| \leq k,|v|>0$, and $u v^{i} w \in L$ for all $i \geq 0$. From $|u|+|v| \leq k,|v|>0$ we can follow that $u=a^{|u|}$, and $v=a^{|v|}$.
By the Pumping Lemma, $u v^{2} w$ is element of $L$ as well. It is

$$
u v^{2} w=a^{k+|v|} b a^{k} b
$$

with $|v|>0$. Therefore, $u v^{2} w$ being an element of $L$ is a contradiction to the definition of $L$. We conclude that $L$ is not an automatic language.

## Homework

1. Are the following languages automatic languages? If so, construct an NFA for that language. If not, prove that the language is not automatic.
(a) $L=\{w \mid w$ has twice as many $a$ 's as $b$ 's $\}$

We will prove that $L$ is not automatic.
For contradiction we assume that $L$ is automatic.
Let us consider $z=a^{2 k} b^{k} \in L,|z| \geq k$. Because of the Pumping Lemma there are $u, v$ and $w$ such that $z=u v w$ with $|u|+|v| \leq k,|v|>0$, and $u v^{i} w \in L$ for all $i \geq 0$. From $|u|+|v| \leq k,|v|>0$ we can follow that $u=a^{|u|}$, and $v=a^{|v|}$.
By the Pumping Lemma, $u v^{2} w$ is element of $L$ as well. It is

$$
u v^{2} w=a^{2 k+|v|} b^{k}
$$

with $|v|>0$. Therefore, $u v^{2} w$ being an element of $L$ is a contradiction to the definition of $L$. We conclude that $L$ is not an automatic language.
(b) $L=\left\{w \mid w \in\{a, b\}^{*}\right.$, the total number of $a$ 's and $b$ 's is odd $\}$

We prove that $L$ is not automatic by giving an automaton accepting $L$.


