COSC 341 - Tutorial 11

1. Find regular expressions for following languages:
(a) $L=\left\{a^{n} b^{m} c^{l} \mid n, m, l \in \mathbb{N}\right\}$ over $\Sigma=\{a, b, c\}$.
(b) $L=\left\{a^{n} b^{m} c^{l} \mid n, m, l \in \mathbb{N}\right\} \backslash\{\lambda\}$ over $\Sigma=\{a, b, c\}$.
(c) $L=\{w \mid w$ contains $a a$ and $b b$ as substring $\}$ over $\Sigma=\{a, b\}$
(d) $L=\{w \mid w$ starts with a, contains two b 's and ends with $c c\}$ over $\Sigma=\{a, b, c\}$
2. Is $L=\left\{a^{n} b^{n} c^{m} \mid m \geq n\right\}$ context free? Prove your answer.
3. In each of the following cases, give examples of languages L_{1} and L_{2} over $\{a, b\}$ such that:
(a) L_{1} is regular, L_{2} is not, and $L_{1} \cup L_{2}$ is regular.
(b) L_{1} is regular, L_{2} is not, and $L_{1} \cup L_{2}$ is not regular.
(c) L_{1} is regular, L_{2} is not, and $L_{1} \cap L_{2}$ is regular.
(d) L_{1} is not regular, L_{2} is not regular, and $L_{1} \cup L_{2}$ is regular.
(e) L_{1} is not regular and L_{1}^{*} is regular.
