COSC 341 – Tutorial 11 (Solution)

- 1. Find regular expressions for following languages:
 - (a) $L = \{a^n b^m c^l | n, m, l \in \mathbb{N}\}$ over $\Sigma = \{a, b, c\}.$

 $a^*b^*c^*$

(b) $L = \{a^n b^m c^l | n, m, l \in \mathbb{N}\} \setminus \{\lambda\}$ over $\Sigma = \{a, b, c\}$.

$$(a^+b^*c^*) \cup (a^*b^+c^*) \cup (a^*b^*c^+)$$
 where $a^+ = aa^*$

(c) $L = \{w | w \text{ contains } aa \text{ and } bb \text{ as substring}\} \text{ over } \Sigma = \{a, b\}$

$$(\Sigma^* aa\Sigma^* bb\Sigma^*) \cup (\Sigma^* bb\Sigma^* aa\Sigma^*)$$

(d) $L = \{w | w \text{ starts with } a, \text{ contains two } b$'s and ends with $cc\}$ over $\Sigma = \{a, b, c\}$

 $a(a \cup c)^* b(a \cup c)^* b(a \cup c)^* cc.$

2. Is $L = \{a^n b^n c^m | m \ge n\}$ context free? Prove your answer.

L is not context free. We prove this by using the Pumping Lemma for context free languages. For contradiction we assume that L is context free.

We consider $z = a^k b^k c^k \in L, |z| \ge k$. Because of the Pumping Lemma there are u, v, w, x and y such that z = uvwxy with $|vwx| \le k, |vx| > 0$, and $uv^i wx^i y \in L$ for all $i \ge 0$. There are five possibilities of how the substring vwx could look like:

- (a) $vwx = a^j$ for some $0 < j \le k$ $\Rightarrow z' = uv^2wx^2y \in L$ according to Pumping Lemma. Contradiction, because z' contains more a's than c's.
- (b) $vwx = a^{j_1}b^{j_2}$ for some $0 < j_1 + j_2 \le k$ $\Rightarrow z' = uv^2wx^2y \in L$ according to Pumping Lemma. Contradiction, because z' contains more a's or b's than c's.
- (c) $vwx = b^j$ for some $0 < j \le k$ $\Rightarrow z' = uv^2wx^2y \in L$ according to Pumping Lemma. Contradiction, because z' contains more b's than c's.
- (d) $vwx = b^{j_1}c^{j_2}$ for some $0 < j_1 + j_2 \le k$ $\Rightarrow z' = uv^0wx^0y \in L$ according to Pumping Lemma. Contradiction, because z' contains more b's or c's than a's.
- (e) $vwx = c^j$ for some $0 < j \le k$ $\Rightarrow z' = uv^0 wx^0 y \in L$ according to Pumping Lemma. Contradiction, because z' contains more *a*'s than *c*'s.

In each of the cases above we end up in a contradiction. Therefore, the assumption that L is context free was wrong. We conclude that L is not context free.

- 3. In each of the following cases, give examples of languages L_1 and L_2 over $\{a, b\}$ such that:
 - (a) L₁ is regular, L₂ is not, and L₁ ∪ L₂ is regular. L₁ = Σ*, L₂ any non-regular language.
 - (b) L₁ is regular, L₂ is not, and L₁ ∪ L₂ is not regular.
 L₁ = a*, L₂ = Even Palindrome
 (Even Palindrome is the set of strings over {a, b} of even length that are the same spelled forward or backward)

- (c) L_1 is regular, L_2 is not, and $L_1 \cap L_2$ is regular. $L_1 = \mathbf{a}^*, L_2 = \mathsf{Even} - \mathsf{Palindrome}.$
- (d) L_1 is not regular, L_2 is not regular, and $L_1 \cup L_2$ is regular. $L_1 = \mathsf{Even} - \mathsf{Palindrome}, L_2 = \Sigma^* \setminus \mathsf{Even} - \mathsf{Palindrome}$ (which cannot be regular, because the regular languages are closed under complementation.
- (e) L_1 is not regular and L_1^* is regular. $L_1 = \mathsf{Even} - \mathsf{Palindrome} \cup \{a, b\}.$