COSC 341 - Tutorial 11 (Solution)

1. Find regular expressions for following languages:
(a) $L=\left\{a^{n} b^{m} c^{l} \mid n, m, l \in \mathbb{N}\right\}$ over $\Sigma=\{a, b, c\}$.

$$
a^{*} b^{*} c^{*}
$$

(b) $L=\left\{a^{n} b^{m} c^{l} \mid n, m, l \in \mathbb{N}\right\} \backslash\{\lambda\}$ over $\Sigma=\{a, b, c\}$.

$$
\left(a^{+} b^{*} c^{*}\right) \cup\left(a^{*} b^{+} c^{*}\right) \cup\left(a^{*} b^{*} c^{+}\right) \text {where } a^{+}=a a^{*}
$$

(c) $L=\{w \mid w$ contains $a a$ and $b b$ as substring $\}$ over $\Sigma=\{a, b\}$

$$
\left(\Sigma^{*} a a \Sigma^{*} b b \Sigma^{*}\right) \cup\left(\Sigma^{*} b b \Sigma^{*} a a \Sigma^{*}\right)
$$

(d) $L=\{w \mid w$ starts with a, contains two b 's and ends with $c c\}$ over $\Sigma=\{a, b, c\}$

$$
a(a \cup c)^{*} b(a \cup c)^{*} b(a \cup c)^{*} c c
$$

2. Is $L=\left\{a^{n} b^{n} c^{m} \mid m \geq n\right\}$ context free? Prove your answer.
L is not context free. We prove this by using the Pumping Lemma for context free languages. For contradiction we assume that L is context free.
We consider $z=a^{k} b^{k} c^{k} \in L,|z| \geq k$. Because of the Pumping Lemma there are u, v, w, x and y such that $z=u v w x y$ with $|v w x| \leq k,|v x|>0$, and $u v^{i} w x^{i} y \in L$ for all $i \geq 0$. There are five possibilities of how the substring $v w x$ could look like:
(a) $v w x=a^{j}$ for some $0<j \leq k$
$\Rightarrow z^{\prime}=u v^{2} w x^{2} y \in L$ according to Pumping Lemma.
Contradiction, because z^{\prime} contains more a 's than c^{\prime} 's.
(b) $v w x=a^{j_{1}} b^{j_{2}}$ for some $0<j_{1}+j_{2} \leq k$
$\Rightarrow z^{\prime}=u v^{2} w x^{2} y \in L$ according to Pumping Lemma.
Contradiction, because z^{\prime} contains more a 's or b 's than c 's.
(c) $v w x=b^{j}$ for some $0<j \leq k$
$\Rightarrow z^{\prime}=u v^{2} w x^{2} y \in L$ according to Pumping Lemma.
Contradiction, because z^{\prime} contains more b 's than c^{\prime} 's.
(d) $v w x=b^{j_{1}} c^{j_{2}}$ for some $0<j_{1}+j_{2} \leq k$
$\Rightarrow z^{\prime}=u v^{0} w x^{0} y \in L$ according to Pumping Lemma.
Contradiction, because z^{\prime} contains more b 's or c 's than a 's.
(e) $v w x=c^{j}$ for some $0<j \leq k$
$\Rightarrow z^{\prime}=u v^{0} w x^{0} y \in L$ according to Pumping Lemma.
Contradiction, because z^{\prime} contains more a 's than c^{\prime} 's.
In each of the cases above we end up in a contradiction. Therefore, the assumption that L is context free was wrong. We conclude that L is not context free.
3. In each of the following cases, give examples of languages L_{1} and L_{2} over $\{a, b\}$ such that:
(a) L_{1} is regular, L_{2} is not, and $L_{1} \cup L_{2}$ is regular.
$L_{1}=\Sigma^{*}, L_{2}$ any non-regular language.
(b) L_{1} is regular, L_{2} is not, and $L_{1} \cup L_{2}$ is not regular.
$L_{1}=\mathbf{a}^{*}, L_{2}=$ Even - Palindrome
(Even - Palindrome is the set of strings over $\{a, b\}$ of even length that are the same spelled forward or backward)
(c) L_{1} is regular, L_{2} is not, and $L_{1} \cap L_{2}$ is regular. $L_{1}=\mathbf{a}^{*}, L_{2}=$ Even - Palindrome.
(d) L_{1} is not regular, L_{2} is not regular, and $L_{1} \cup L_{2}$ is regular. $L_{1}=$ Even - Palindrome, $L_{2}=\Sigma^{*} \backslash$ Even - Palindrome (which cannot be regular, because the regular languages are closed under complementation.
(e) L_{1} is not regular and L_{1}^{*} is regular.
$L_{1}=$ Even - Palindrome $\cup\{a, b\}$.
