Due Date: Friday 29 April, 4pm

Please submit a PDF by email to: teaching@biods.org with subject "341 Assignment 2". Make sure that your name and ID number are on the PDF called: YourName_assignment2.pdf

What you hand in should be all your own work.
Note that marks might be deduced if you fail to follow the above instructions. Do let us know if you find them challenging.

Questions

1. Let $\Sigma=\{0,1\}$, and for a word $w \in \Sigma^{*}$ define \bar{w} to be the word obtained by exchanging 0 's and 1's in w (so if $w=101$ then $\bar{w}=010$). Consider the language L over the alphabet $\{0,1,2\}$ consisting of all words of the form $w 2 \bar{w}$, where $w \in \Sigma^{*}$.
(a) Is L regular? Prove it. ($\mathbf{2}$ marks)
(b) Is L context-free? Prove it. (2 mark)
2. Design a Turing machine to compute $f(x)=2^{x}$. Use comments (or self-explanatory state names, or both) in your code to make it readable. Both correctness and readability of your code will be marked. (3 marks)
3. Show that, if there is a language Q that is both in \mathcal{P} and $\mathcal{N} P$-complete, then $\mathcal{P}=\mathcal{N} \mathcal{P}$. (3 marks)
